

HiTEc meeting & Workshop on Complex data in Econometrics and Statistics

Machine Learning and Uncertainty Analysis for Remaining Value Estimation

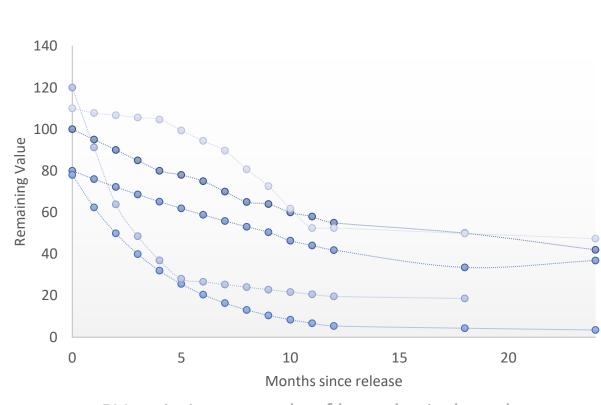
leva Dundulienė (KTU), Robertas Alzbutas (KTU, LEI)

HiTEc & CoDES, 2024/03/24

ktu

1922

Outline


- Remaining Value Estimation
- Uncertainty Analysis, Problems & Opportunities
- Gold Standard in Refurbished Products Evaluation
- Machine Learning Application for Refurbished Products Remaining Value Estimation
- Case Study: Automated Refurbished Smartphones Remaining Value Estimation

Remaining Value (RV)

Remaining Value (RV) -

Estimated value of the product at the specific time moment *t*.

Remaining Value depends on multiple factors that should be considered while evaluating RV.

RV variation example of hypothetical product

Machine Learning (ML) Models Application for Remaining Value Estimation

ML models are commonly used for remaining value estimation for solving problems:

- Predictive/preventive manufacturing line maintenance, reducing downtime and optimizing maintenance schedules. Sensor data analysis, NN, Gradient Boosting, Survival Analysis, Time Series Forecasting
- Estimating RV or future performance of financial assets, portfolios. *Time Series Forecasting (ARIMA, GARCH, ...), ML models, Monte Carlo simulations*
- Inventory Management and Supply Chain while forecasting the remaining inventory levels, demand forecasting, managing supply chain operations. *Time Series Forecasting, ML models, Stochastic modelling.*

Problems & Opportunities

Economic

Recent studies have noted a shift n the world economic model towards *sustainability* through the circular economy with *artificial intelligence* helping in facilitating this transformation.

Environmental

53.6 Mt generated E-waste in 2019. Every year global e-waste generation is increasing.

Social

Customers are more frequently considering to buy refurbished or used items.

Customers overlook refurbished products due to a lack of awareness of the refurbishment principle.

Behavioural

Mobile phone penetration is estimated at 90% among EU adults.

Gold Standard in Refurbished Products Evaluation

- Evaluating the Remaining value of refurbished products creates new challenges due to the refurbished products' technical characteristics, unobserved usage patterns, and others.
- The absence of validation standards (etalon) or publicly available standardized data complicates the evaluation process.
- Limited data availability bring additional obstacles while evaluating products characteristics.
- The growing consumer preference for refurbished products in the long term perspective will increase the demand for automated solutions that evaluation.

Regression Evaluation

If \overline{y} is the mean of observed data

 $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$

The residuals squares calculation

$$SS_{res} = \sum_{i} (y_i - \hat{y}_i)^2 = \sum_{i} e_i^2$$

The total sum of squares

$$SS_{tot} = \sum_{i} (y_i - \bar{y})^2$$

Coefficient of determination

$$R^2 = 1 - \frac{SS_{res}}{SS_{tot}}$$

Other regression evaluation metrics:

Mean Absolute Error (MAE)

$$MAE = \frac{1}{n} \sum_{i} |y - \bar{y}|$$

Mean Squared Error (MSE)

$$MSE = \frac{1}{n} \sum_{i} (y - \hat{y})^2$$

Root Mean Squared Error (RMSE)

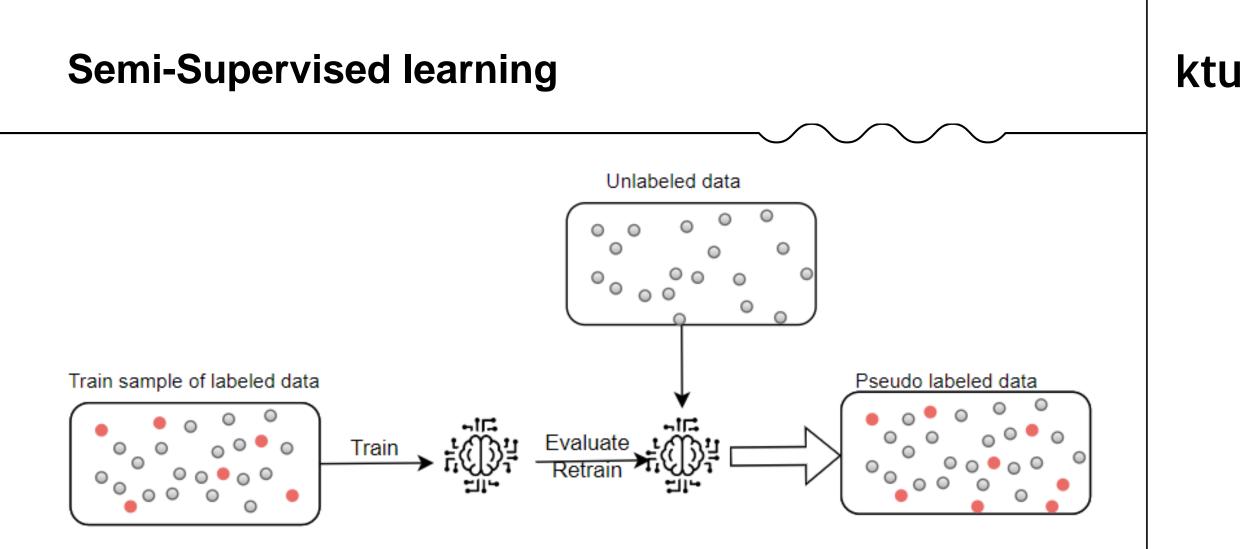
$$RMSE = \sqrt{MSE}$$

Semi-Supervised learning

ktu

Semi-supervised learning is a **subset** of Machine Learning (ML) that combines supervised and unsupervised learning practices.

In terms of semi-supervised learning there **might be applied** supervised or unsupervised ML techniques but due to application limitations, results accuracy, and cost semi-supervised learning is usually applied to compensate for these limitations.


Supervised learning limitations when there is a limited amount of labeled data:

- Slow (Should find an expert to label/validate values)
- Costly (Requires to have a large data volume to have accurate predictions)

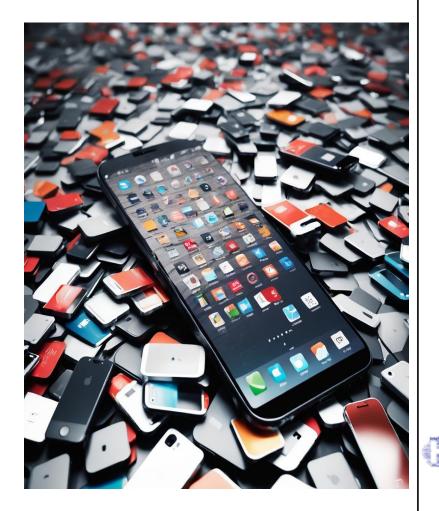
Unsupervised learning limitations:

- Usually used for clustering
- Results are less accurate or difficult to evaluate

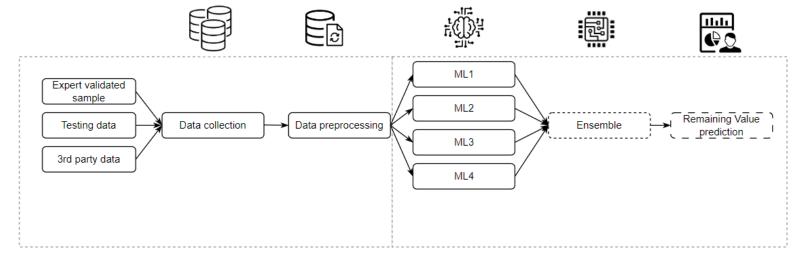
- <u>The labelled data sample is trained with a regression model. Model performance evaluated</u> on the labeled validation set.
- <u>Unlabeled</u> dataset is trained by created and validated model to generate pseudo labels.

Case Study: Automated Refurbished Smartphones Remaining Value Estimation

Data:


- Smartphones' test results values
- Unstructured experts' comments
- Data input (even sources) mistakes

Key challenges:


- Multiple data sources and types integration.
- The proportion of known RV is very low (**<10%**)

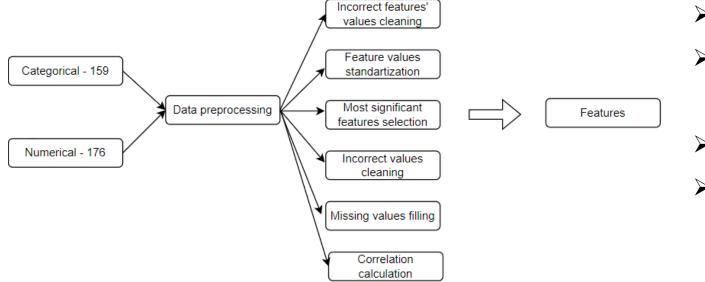
Advantages:

- Structured and automated way of remaining value estimation/comparison.
- Applying Machine Learning Methods and estimating remaining value without known true value.
- Evaluate predicted value uncertainty

Case Study: Automated Refurbished Smartphones Remaining Value Estimation Framework

- Semi-supervised learning
- Domain knowledge

integration


- Multicollinearity eliminations
- Supervised regression analysis
- Meta model application for Remaining Value (RV) estimation
- Uncertainty Evaluation

11

Case Study: Data Preprocessing

 <u>Data preprocessing strategy consists of multiple steps</u> to reduce the number of features, unify feature values, and clean comments.

- Unified feature values
- Written comments validation

and preparation

- Multicollinearity detection
- Categorical features

encoding

 After data preprocessing procedures the final dataset consists of numerical variables (categorical encoded features included)

Case Study: Multicollinearity

Multicollinearity was identified by multiple methods:

- Pairwise Correlations to estimate pairwise correlations between independent variables.
- <u>Variance Inflation Factor (VIF)</u> evaluates the relationship between one independent variable with all the other independent variables.

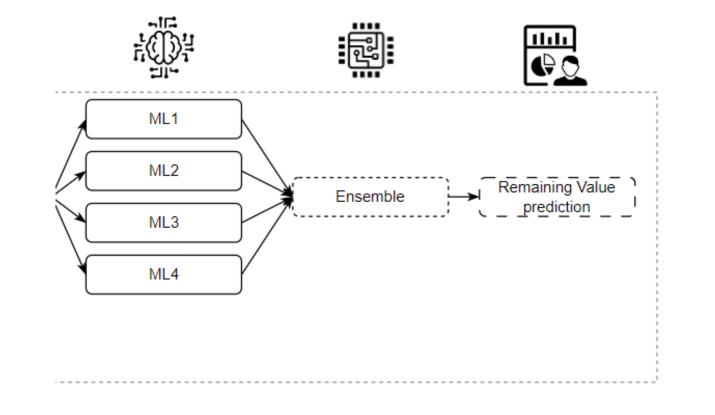
Features excluded when VIF > 10

 $VIF_i = \frac{1}{1 - R_i^2}$

Darbo aprašas_Bendra įrenginio būklė	2.22
Darbo aprašas_Dangtelio būklės nustatymas	2.42
Darbo aprašas_Detalių užsakymas remontui	1.63
Darbo aprašas_Pirminė įrenginio būklė	1.81
Chargeable	1.31
Battery Cycle Count	2.40
battery_health	2.42
battery_lifetime	1.44
Battery Temperature	1.68

 <u>Visual identification - plotting pairwise scatterplots between independent variables</u> can help visualize the relationships between them.

Case Study: Automated Refurbished Smartphones Remaining Value Estimation Framework

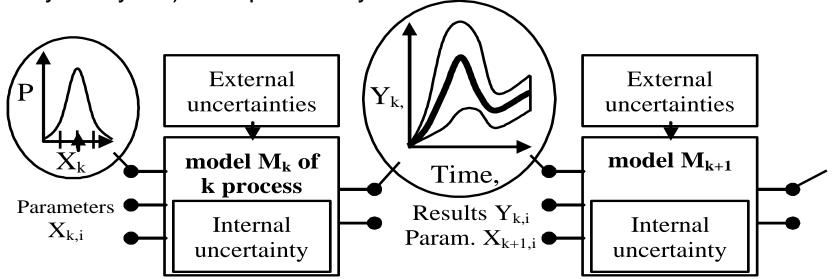

Expert validated sample Testing data Data collection Data preprocessing 3rd party data

Semi-supervised model evaluation after hyperparameters tunning.

Model	Labelled sample R ²
Linear Regression	0,56
Random Forest	0,8
XgBoost	0,9
AdaBoost	0,82

 XgBoost model selected for the pseudo labels generation.

Case Study: Data preprocessing

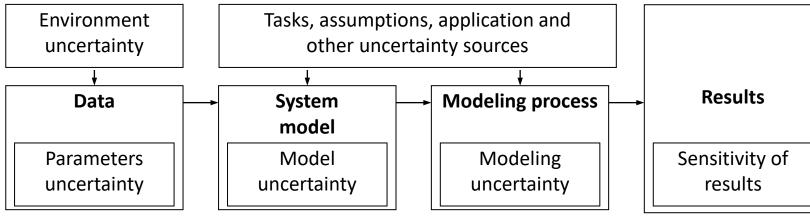


- Pseudo labeled values used as input in Supervised learning algorithms.
- Single model and meta model results:

Model	R ²
Linear Regression	0.72
Random Forest	0.84
XgBoost	0.87
Meta Model	0.89

Uncertainty Estimation in the Modelling Process

 <u>The approach suggested for uncertainty and sensitivity analysis</u> is based on wellestablished concepts and tools (e. g. SimLAB, SUSA - Software System for Uncertainty and Sensitivity Analyses) from probability calculus and statistics.


Distribution estimation for process parameters

- <u>It requires identification of the potentially important contributors</u> to the uncertainty of the results and the quantification of the respective <u>state of knowledge by subjective probability distributions</u>.
- Such a distribution expresses how well an uncertain parameter of the model application is known.

Uncertainty/Sensitivity Estimation/Analysis

- <u>The aim of sensitivity analysis is to identify the main contributors</u> to the possible variability of results.
- Sensitivity analysis is <u>performed in connection with uncertainty analysis</u> in order to see the combined <u>influence of all the potentially important uncertainties on the result</u>.

Uncertainty and sensitivity estimation process

- In order to rank uncertainties according to their contribution to output uncertainty, standardized regression coefficients (SRCs) might be chosen from the many other measures available.
- They are capable to indicate the direction of the contribution. Additionally, using sample-based method the different correlation ratios are computed/compared. +Variance-based methods (FAST, Sobol, etc.).

Conclusion

- Increased consumer awareness along with advances in Machine Learning techniques, enable decision-makers with data-driven insights for informed decision-making.
- With the absence of a gold standard or labeled data for model validation, data preprocessing becomes a critical process.
- Semi-supervised learning methods enable the application of supervised learning approaches for accurate remaining value estimation, effectively reducing data labeling costs.
- Combination of multiple regression models into a single one improves the model performance of Remaining Value Estimation R² from 0.87 to 0.88.

HiTEc meeting & Workshop on Complex data in Econometrics and Statistics

Questions?

leva Dundulienė, ieva.dirdaite@ktu.edu Robertas Alzbutas, robertas.alzbutas@ktu.lt

ktu

1922